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Abstract. We continue our investigation concerning the question of whether atomic bound
states begin to stabilize in the ultra-intense field limit. The pulses considered are essentially
arbitrary, but we distinguish between three situations. First, the total classical momentum transfer
is non-vanishing, second, not both the total classical momentum transfer and the total classical
displacement are vanishing together with the requirement that the potential has a finite number
of bound states and third, both the total classical momentum transfer and the total classical
displacement are vanishing. For the first two cases we rigorously prove, that the ionization
probability tends to one when the amplitude of the pulse tends to infinity and the pulse shape
remains fixed. In the third case the limit is strictly smaller than one. This case is also related
to the high-frequency limit.

Ionization probabilities of atomic systems in the presence of intense laser fields are in general
poorly predicted. Intense means here that the field intensities are of comparable size in
magnitude with the ionization energy of the potential and hence conventional perturbation
theory ceases to be valid. Numerous different methods for theoretical investigations have
been carried out in order to treat the new intensity regime, such as perturbative methods
around the Gordon–Volkov solution [1] of the Schrödinger equation [2–8], fully numerical
solutions of the Schrödinger equation [9–16], Floquet solutions [17–19], high frequency
approximations [20] or analogies to classical dynamical systems [21]. Some of these
investigations have led to the prediction of so-called atomic stabilization, which means
that the ionization probability is supposed to decrease once a certain critical intensity has
been surpassed. However, several authors have raised doubts and question whether such an
effect really exists [7, 27, 25, 5, 8, 28–30]. For reviews on the subject we refer the reader to
[22–24, 26].

In this paper we wish to continue our previous investigations [28–30] and answer the
question concerning the ionization probability in the limit when the field amplitude tends
to infinity, while the pulse shape remains fixed. Of course strictly speaking one would
have to include relativistic effects into the analysis at some high intensities and then a
proper quantum field theoretical treatment is needed. However, the Schrödinger theory
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with the a.c. Stark Hamiltonian is consistent in itself, also in this regime and in this light
the limit becomes meaningful. Clearly our analysis does not capture the effect of window
stabilization, which is the purported phenomenon that stabilization only occurs in a certain
regime of high intensities and then the ionization probability tends to one once this regime
is surpassed.

We consider the Schrödinger equation involving some potentialV (x), for instance
the atomic potential, coupled to a classical linearly polarized electric field in the dipole
approximationE(t)

i
∂ψ(x, t)

∂t
=
(
−1

2
+ V (x)+ z · E(t)

)
ψ(x, t) = H(t)ψ(x, t). (1)

We use atomic units ¯h = e = me = cα = 1 and we will mainly adopt the notations in [28].
We now want to state precisely which type of potentials and electric fields are included in
our analysis.

Assumptions on V.V (x) is a real measurable function onR3. To eachε > 0 one may
decomposeV as

V = V1+ V2 (2)

whereV1 is in L2(R3) (i.e. square integrable) with compact support andV2 is in L∞(R3)

with

‖V2‖∞ = ess sup
x∈R3

|V2(x)| 6 ε. (3)

Furthermore we assume thatH = H0+ V with H0 = −1
2 has no positive bound states.

Relation (3) means that up to a set of measure zeroV2(x) is bounded in absolute
value byε. We note that the potentials of atoms or molecules arising from Coulomb pair
interactions belong to this wide class. To obtain for instance the decomposition (2) for the
Coulomb potential 1/|x| we set

1

|x| =
χ1/ε(x)

|x| +
1− χ1/ε(x)

|x|
whereχR(x) is the characteristic function of the ball{x : |x| 6 R} of radiusR,

χR(x) =
{

1 for |x| 6 R
0 for |x| > R.

Potentials satisfying the above assumptions are Kato small, i.e. for eachα with
0< α 6 1, there exists a constantβ = β(α) > 0 such that

‖Vψ‖ 6 α
∥∥∥∥−12 ψ

∥∥∥∥+ β‖ψ‖ (4)

for all ψ ∈ L2(R3) with 1ψ ∈ L2(R3). The HamiltonianH is self-adjoint on the Hilbert
spaceL2(R3) and the domainsD(H) andD(H0) of the definition ofH andH0 agree [31].
H is bounded from below and has no positive eigenvalues ifV decays suitably at infinity
[32, 33].

As for the conditions on the electric field, we assume that it takes on the form

E(t) = E0f (t) (5)
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wheref (t) is assumed to be measurable int with f (t) = 0 unless 06 t 6 τ. We call τ
the pulse duration,f (t) the pulse shape andE0 the amplitude of the pulseE(t). Further
we introduce the quantities

b(t) =
∫ t

0
ds E(s) = E0

∫ t

0
ds f (s) = E0b0(t) (6)

c(t) =
∫ t

0
ds b(s) = tb(t)−

∫ t

0
ds E(s)s = E0c0(t). (7)

With ez being the unit vector inz-direction,b(τ)ez is the total classical momentum transfer
and c(τ )ez the total classical displacement. We are now in a position to formulate more
precisely our assumptions on the electric field, that is on the pulse shapef (t).

Assumptions on E.f (t) is a real measurable non-vanishing function int , with support in
the interval [0, τ ] such that

b0(τ ) 6= 0. (8)

In case the potential possesses a finite number of bound states we only assume that

b0(τ )
2+ c0(τ )

2 6= 0. (9)

Finally, c0(t) is supposed to be piecewise continuous possibly with a finite number of zeros
in [0, τ ].

Of course the restrictions of a finite number of bound states excludes the Coulomb
potential. However, we would like to remark that in general most numerical calculations
in this context also implicitly assume a finite number of bound states. When projecting on
bound states numerically, one is always forced to introduce a cut-off. Hence our analysis
also allows, in that case, a direct comparison with such computations. The gain in the latter
case is that when the requirement (8) is relaxed to (9) it allows us to include more types of
pulses such as Gaussian etc. All pulses used in the literature satisfy the assumption onE.

The ionization probability for any given normalized bound stateψ of the Hamiltonian
H is given by

P(ψ) = ‖(1− P)U(τ, 0)ψ‖2 = 1− ‖PU(τ, 0)ψ‖2. (10)

HereU(t ′, t) denotes the unitary time evolution operator from timet to time t ′ associated
to H(t). Its existence† follows from results in [38, 39] (for details see [37]).

FurtherP denotes the orthogonal projection inL2(R3) on the space spanned by the
bound states ofH = H0 + V . For more details on the precise definition of the ionization
probability and its properties we refer the reader to [28]. In what followsf (t) andV will
be fixed.

We now formulate the main theorem of this article.

† In order to show the existence we have to make some additional assumptions onV , namely we assume that
Vi(x− uez) i = 1, 2 areL2 andL∞ valued continuous functions inu, such that in addition

Wi(u) = ∂

∂u
Vi(x− uez) i = 1, 2

exists and satisfies‖W1(u)‖p <∞ for some 6
5 < p 6 4

3 and‖W2(u)‖∞ <∞ uniformly in u on compact sets in
R. So strictly speaking we have to extend our assumptions onV . However, for standard potentials like Coulomb
potentials etc this additional assumption is always satisfied and we therefore omitted it above for the sake of clarity.
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Theorem 1.With the above assumptions on the electric fieldE and the potentialV , the
ionization probabilityP for any bound stateψ of H = H0 + V tends to one for the field
amplitudeE0 going to infinity

lim
|E0|→∞

P(ψ) = 1.

This improves a previous result in [28, relation (3.31)] which stated that
lim|E0|→∞ P(ψ) > 1− τ 2c, wherec is a constant depending on the potentialV and on
ψ only. The proof of this main theorem in case of condition (9) shows that the finite
dimensional projectorP may in fact be chosen arbitrarily. In particular in the case of the
Coulomb potential,P may be the projector on the space spanned byany finite set of bound
states.

To start the proof of theorem 1 following [28] we may first rewrite the ionization
probability as

P(ψ) = 1− ‖P exp−ib(τ)z exp ic(τ )pzU
′(τ, 0)ψ‖2. (11)

HereU ′(t ′, t) is the unitary time-evolution operator associated with the Stark Hamiltonian
(1) in the Kramers–Henneberger gauge [34, 35]

H ′(t) = −1
2
+ V (x− c(t)ez). (12)

The next result will be crucial for the proof of theorem 1, that in the limitE0 → ∞
the time evolutionU ′ for H ′(t) is just the free time evolution. We will need this result in
the following form.

Theorem 2.For all ϕ ∈ L2(R3)

lim
|E0|→∞

‖(U ′(τ, 0)− exp−iτH0)ϕ‖ = 0 (13)

i.e. U ′(τ, 0) converges strongly to exp(−iτH0) as |E0| → ∞.

The proof of theorem 2 will proceed in several steps. Before we begin with the proof we
note that this is essentially Kato’s theorem on the strong convergence of propagators for time
dependent Hamiltonians [40]. However we cannot use this theorem directly since it is not
valid for Hamiltonians with Coulomb interaction. Since‖(U ′(τ, 0)−exp−iτH0)ϕ‖ 6 2‖ϕ‖
it suffices to prove (13) for allϕ ∈ D(H0) = D(H), which is a dense set inL2(R3).

First we use Du Hamel’s formula to write

(U ′(τ, 0)− exp−iτH0)ϕ = −i
∫ τ

0
U ′(τ, s)V (x− c(s)ez) exp(−isH0)ϕ ds (14)

with ϕ ∈ D(H0). We note that by the spectral theorem exp−isH0 leavesD(H0) invariant.
Therefore from (14) it follows that

‖(U ′(τ, 0)− exp(−iτH0))ϕ‖ 6
∫ τ

0
‖V (x− c(s)ez) exp(−isH0)ϕ‖ ds (15)

uniformly in E0.
To proceed further we use the following.

Lemma 1.For anyϕ ∈ D(H) = D(H0) and alls ∈ [0, τ ] with c0(s) 6= 0 one has

lim
E0→∞

‖V (x− c(s)γ ez)ϕ‖ = 0. (16)
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Proof. It suffices to show that for anyϕ ∈ D(H) = D(H0)

lim
|γ |→∞

‖V (x− γ ez)ϕ‖ = 0.

We show that for arbitrary smallε > 0 the estimate‖V (x − γ ez)ϕ‖ < ε holds for all
sufficiently largeγ > 0.

SinceV is Kato small and since−1 commutes with translations, the potential in the
Kramers–Henneberger gauge satisfies a similar estimate

‖V (x− γ ez)ϕ‖ 6
∥∥∥∥−12 ϕ

∥∥∥∥+ β‖ϕ‖ (17)

with fixed β <∞ and for allγ .
Indeed,

‖V (x− γ ez)ϕ‖ = ‖V (x) exp(iγpz)ϕ‖
6 ‖H0 exp(iγpz)ϕ‖ + β‖ exp(iγpz)ϕ‖ = ‖H0ϕ‖ + β‖ϕ‖

where the last equality follows from the fact thatH0 commutes with the translations. In
comparison with (4) we have takenα = 1 and chosenβ = max(β(α = 1), 1). Hence it
suffices to prove (16) on a core forH0 which is also a core forH . We recall thatC is a
core for a self-adjoint operatorA with domainD(A), if C is contained and dense inD(A)
with respect to the topology inD(A) given by the norm‖ϕ‖D(A) = ‖Aϕ‖ + ‖ϕ‖. Indeed,
for a givenϕ ∈ D(H0) let ϕ′ ∈ C be such that

‖H0(ϕ − ϕ′)‖ + ‖(ϕ − ϕ′)‖ 6 ε

2β
.

Also let γ (ε, ϕ′) be such that

‖V (x− γ ez)ϕ′‖ 6 ε

2
for all γ > γ (ε, ϕ′).

Then

‖V (x− γ ez)ϕ‖ 6 ‖V (x− γ ez)(ϕ − ϕ′)‖ + ‖V (x− γ ez)ϕ′‖
6 ‖H0(ϕ − ϕ′)‖ + β‖(ϕ − ϕ′)‖ + ε

2
6 ε.

Now C∞0 (R3), the set of smooth functions onR3 with compact support, is such a core and
we will now prove (16) on this core. Assuming thatϕ ∈ C∞0 (R3) is normalized, we obtain
with the assumptions onV

‖V (x− γ ez)ϕ‖ 6 ‖V1(x− γ ez)ϕ‖ + ‖V2(x− γ ez)ϕ‖
6 ‖V1(x− γ ez)ϕ‖ + ε.

For |γ | sufficiently largeV1(x− γ ez)ϕ = 0 and the lemma follows. �

We proceed with the proof of theorem 2. Since for fixedϕ ∈ D(H0) the map
exp(−isH0) : [0, τ ] → D(H0) given by s 7→ exp(−isH0)ϕ is continuous, the set
S = {exp(−isH0)ϕ}06s6τ is compact inD(H0). Therefore

‖V (x− c(s)ez)ψ‖ → 0

as |E0| → ∞ uniformly in ψ ∈ S for all s ∈ [0, τ ] except the finite set wherec0(s) = 0
(see e.g. [41]). Now the r.h.s. of (15) for anyϕ ∈ D(H0) can be bounded by

‖(U ′(τ, 0)− exp(−iτH0))ϕ‖ 6
∫ τ

0
sup
ψ∈S
‖V (x− c(s)ez)ψ‖ ds. (18)
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From (17) and the definition ofS it follows also that

‖V (x− c(s)ez)ψ‖ 6 Cϕ
for all ψ ∈ S and alls ∈ [0, τ ] with

Cϕ =
∥∥∥∥−12 ϕ

∥∥∥∥+ β‖ϕ‖
for everyϕ ∈ D(H0) uniformly in E0.

By the Lebesgue dominated convergence theorem we therefore have that the r.h.s. of
(18) tends to zero as|E0| → ∞.

This completes the proof of theorem 2. �

Remark 1.From the preceding discussion, it is obvious how to weaken the last condition
in the assumptions onE. Assume we may divide the interval [0, τ ] into 2N + 1 parts as
0= τ0 < τ1 < · · · < τ2N < τ2N+1 = τ, such thatc0(t) vanishes identically in the intervals
[τ2j , τ2j+1] (06 j 6 N) and is non-zero except for a finite set in the intervals [τ2j+1, τ2j+2]
(06 j 6 N − 1). ThenU ′(τ, 0) converges strongly to

U ′′ = e−i(τ2N+1−τ2N )H0 · e−i(τ2N−τ2N−1)H · · ·e−i(τ2−τ1)H · e−i(τ1−τ0)H0. (19)

Sincef (t) is by assumption not identically zero,c0(t) is not identically zero on [0, τ ], so
U ′′ 6= exp(−iτH).

To prove the main theorem it suffices now, by theorem 2 and the obvious estimate

‖Pe−ib(τ)zeic(τ )pz · U ′(τ, 0)ψ‖ 6 ‖Pe−ib(τ)zeic(τ )pze−iτH0ψ‖
+‖Pe−ib(τ)zeic(τ )pz (U ′(τ, 0)− e−iτH0)ψ‖ 6 ‖Pe−ib(τ)zeic(τ )pze−iτH0ψ‖
+‖(U ′(τ, 0)− e−iτH0)ψ‖

to show that

lim
|E0|→∞

‖P exp(−ib(τ)z) exp(ic(τ )pz) exp(−iτH0)ψ‖ = 0. (20)

Here exp−iτH0 has to be replaced byU ′′ in case remark 5 applies. Since exp−iτH0 leaves
D(H0) invariant, it is enough to show

lim
|E0|→∞

‖P exp(−ib(τ)z) exp(ic(τ )pz)ϕ‖ = 0 (21)

for all ϕ ∈ D(H) = D(H0) in order to prove (20).
We now modify some arguments already used in [36] and [28]. First we consider the

case whenb0(τ ) 6= 0. Also by assumption we havePH 6 0. HenceP(H − 1
2b(τ)

2)−1 is
a well defined operator with norm smaller or equal to 2/b(τ)2. Therefore we have

‖P exp(−ib(τ)z) exp(ic(τ )pz)ϕ‖ = ‖P(H − 1
2b(τ)

2)−1(H − 1
2b(τ)

2) exp(−ib(τ)z)

× exp(ic(τ )pz)ϕ‖ 6 2

b(τ)2

∥∥∥∥(H − 1

2
b(τ)2

)
exp(−ib(τ)z) exp(ic(τ )pz)ϕ

∥∥∥∥ .
(22)

Inserting the relation

exp(−ic(τ )pz) exp(ib(τ)z)H · exp(−ib(τ)z) exp(ic(τ )pz)

= H0− b(τ)pz + 1
2b(τ)

2+ V (x− c(τ )ez) (23)
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into (22) yields

‖P exp(−ib(τ)z) exp(ic(τ )pz)ϕ‖ 6 2

b(τ)2
{‖H0ϕ‖ + b(τ)‖pzϕ‖ + ‖V (x− c(τ )ez)ϕ‖}.

(24)

Furthermore

‖pzϕ‖2 = 〈ϕ, p2
zϕ〉 6 2〈ϕ,H0ϕ〉 6 〈ϕ,H0

2ϕ〉 + 〈ϕ, ϕ〉
such that

‖pzϕ‖ 6 ‖H0ϕ‖ + ‖ϕ‖. (25)

Finally we have that‖V (x−c(τ )ez)ϕ‖ is uniformly bounded inE0 by lemma 1 and therefore
we may control the limit|E0| → ∞ in (24), i.e. the r.h.s. goes asO( 1

‖E0‖ ). This concludes
the proof of the main theorem for the caseb0(τ ) 6= 0 .

We now turn to the case whenP is a finite dimensional projection andb0(τ )
2+c0(τ )

2 =:
a2

0 6= 0. Actually by what has already been proved, it would suffice to consider the case
b0(τ ) = 0, c0(τ ) 6= 0 only. However, we will prove the claim for an arbitrary finite
dimensionalP not necessarily being the projection onto the space spanned by the bound
states ofH .

We start with two preliminary considerations. First, by the Campbell–Hausdorff formula

exp(−ib(τ)z) exp(ic(τ )pz) = exp
i

2
b(τ)c(τ ) exp(i(c(τ )pz − b(τ)z)). (26)

Now there is always ans such that

c(τ )pz − b(τ)z = E0a0(z coss + pz sins) = E0a0Z(s). (27)

Introducing the unitary operatorW(s) = exp is
2 (p

2
z + z2) we may perform a Bogoliubov

transformation onz

W(s)zW(s)−1 = Z(s). (28)

Second, letϕn(16 n 6 N) be an orthonormal basis for the range ofP , then

‖P exp(−ib(τ)z) exp(ic(τ )pz)ϕ‖2 =
N∑
n=1

|〈ϕn, exp(iE0a0Z(s)))ϕ〉|2

=
N∑
n=1

|〈W(s)−1ϕn, exp(iE0a0z)W(s)
−1ϕ〉|2

=
N∑
n=1

∣∣∣∣ ∫ dx (W(s)−1ϕn)(x)(W(s)
−1ϕ)(x) exp(iE0a0z)

∣∣∣∣2.
Since(W(s)−1ϕn)(x)(W(s)

−1ϕ)(x) ∈ L1(R3) the r.h.s. of the last equation vanishes in the
limit |E0| → ∞ by the Riemann-Lebesgue theorem, which concludes the proof of the main
theorem. �

We now turn to the case whenb0(τ ) = c0(τ ) = 0. Note, that if we consider linearly
polarized light, then for the most common pulse shapes for instance a static envelope,
trapezoidal envelope, sine-squared envelope etc [29] the extreme high frequency limit, i.e.
ω→∞ leads tob0(τ ) = c0(τ ) = 0. This limit is needed in order to apply the analysis of
Gavrila and co-workers [20], which provides so far the most profound ‘explanation’ for the
occurrence of stabilization.

We now state and prove the second main theorem.
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Theorem 3.Let b0(τ ) = c0(τ ) = 0. Denote

p(τ) = lim
|E0|→∞

P(ψ) = ‖(1− P) exp(−iτH0)ψ‖2. (29)

If H has only one bound state (i.e. ifP is one dimensional) thenp(τ) > 0 for all τ > 0.
Furthermorep(τ) < 1 (at least) for allτ ∈ [0, τ∗] where

τ∗ = π [〈H0ψ,H0ψ〉 − 〈ψ,H0ψ〉2]−1/2.

Proof. We consider the survival probabilityq(τ) = |(ψ, e−iτH0ψ)|2 and observe that
p(τ) = 1− q(τ) if there is only one bound state. We prove thatq(τ) < 1 for all τ > 0.
Note that by Schwarz inequality the boundq(τ) 6 1 is trivial. Now

(ψ, e−iτH0ψ) =
∫ ∞

0
e−iλτ dµψ(λ) ≡ µ̂ψ(τ )

whereµψ is the (non-negative, absolute continuous) spectral measure associated withH0,

µψ((−∞, λ]) =


∫
|p|6√2λ

|ψ̂(p)|2 dp λ > 0

0 λ < 0.

Obviously,
∫
R dµψ (λ) = 1. It is well known (see e.g. [42]) that|µ̂ψ(τ )| < 1 for all τ > 0

when the measureµψ is absolutely continuous.
The second part of theorem 3 follows from the estimate of Pfeifer [43]. �

We note that due to the Paley–Wiener theorem̂µψ(τ) cannot have compact support.
Therefore the inequalityp(τ) < 1 must be valid for some suitable arbitrary largeτ > 0. On
the other hand, it is well known that|µ̂ψ(τ )| 6 Cτ−N for arbitraryN and all largeτ > 0,
since the spectrum ofH0 is purely transient absolute continuous (see for instance [44]).
This means that in this caseH has only one bound state, say, the ionization probability
p(τ) will tend to one, faster than any power inverse power ofτ for τ →∞ .

Example 1.The easiest pulse shape for which theorem 3 applies isf (t) = cos(ωt), since
thenc0(τ = 2πn

ω
) = b0(τ = 2πn

ω
) = 0. As a concrete example for the potential we choose

the Coulomb potentialV (x) = −1/|x|. The normalized wavefunction of the ground state
in the momentum representation is given by (see for instance [45])

9(p) =
√

8

π

1

(1+ p2)2

such that the survival probability in this case reads

q(τ) =
(

32

π

)2 ∣∣∣∣ ∫ ∞
0

dp p2 e−iτ p
2

2

(1+ p2)4

∣∣∣∣2 = 64

π

∣∣∣∣U (3

2
,−3

2
; iτ

2

)∣∣∣∣2 .
HereU(a, b; z) denotes a confluent hypergeometric function (see for instance [46]). So for
typical sub-picosecond pulses we obtain for instanceq(τ = 400 au) = 2.45× 10−6 and
q(τ = 1000 au) = 1.63× 10−7. It is essential here to note that the survival probability is
always non-vanishing and monotonically decreasing inτ (see figure 1).
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Figure 1. Survival probabilityq(τ(au)) after the timeτ for the ground state of the Hydrogen
atom under the free time evolution.

Example 2.We now take the potential to be the attracting point interaction, often also called
the delta potential in three dimensions (see e.g. [47]) with coupling constantα > 0. This
potential has the virtue that it possess only one eigenstate

9(x) =
√
α

2π

e−α|x|

|x|
with energy−(α)2. In the momentum representation the wavefunction is given by

9(p) =
√
α

π

1

(α2+ p2)

such that the survival probability turns out to be

qα(τ ) = 16α2

π2

∣∣∣∣ ∫ ∞
0

dp p2 e−iτ p
2

2

(α2+ p2)2

∣∣∣∣2 = 1

π

∣∣∣∣U (3

2
,

1

2
; iτα2

2

)∣∣∣∣2 .
As figure 2 illustrates, the survival probability decreases monotonically with increasingα for
fixed pulse durationτ . The figure also shows, that for increasingτ the survival probability
decreases.

We may assume that the Hydrogen atom behaves, with respect to the energy variation,
qualitatively the same way as the point interaction. Then this example indicates that one
should expect that for sufficiently high Rydberg states the survival probabilityq(τ) will be
sufficiently close to 1 even for timesτ ≈ 1 ps.

Conclusions

We have investigated the ionization probability in the extreme intensity limit for three
different situations. The first analysis presumes that the classical momentum transferb0(τ )

is non-vanishing and allows essentially all common potentials. Since the conditionb0(τ ) 6= 0
excludes a wide range of possible pulses, we also studied separately a situation for which
we only demand that not both the classical momentum transferb0(τ ) and the total classical
momentum transferc0(τ ) vanish simultaneously. In addition we have to demand for this
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Figure 2. Survival probabilityqα(τ (au)) for fixed pulse durationτ = 200 au dotted curve,
τ = 400 au broken curve,τ = 1000 au full curve, for the bound state of the three-dimensional
delta potential under the free time evolution as a function of the couplingα.

case that the potential only possesses a finite number of bound states. This is similar to
the situation in many numerical calculations, in which one is also forced to introduce a
cut-off at some level when projecting onto bound states. In both cases we find that the
ionization probabilityP for any bound state of the HamiltonianH = H0 + V for the field
amplitudeE0 going to infinity is going to one. This excludes, in our opinion, the possibility
of stabilization for these situations, apart from window stabilization.

Finally, we considered the situation in whichb0(τ ) = c0(τ ) = 0 and found the
possibility of stabilization. For the most common pulses, which involve linearly polarized
light, this case corresponds to the high-frequency limit of Gavrila and co-workers [20].
We conclude that our analysis is consistent with the ‘high-frequency picture’ and that
stabilization is only to be expected in this latter case.

References

[1] Gordon W 1926Z. Phys.40 117
Volkov D M 1935 Z. Phys.94 250

[2] Keldysh L V 1965 Sov. Phys.—JETP20 1307
Perelomov A M, Popov V S and Terentev M V 1966 Sov. Phys.—JETP23 924
Perelomov A M, Popov V S and Terentev M V 1967 Sov. Phys.—JETP24 207
Faisal F H M 1973J. Phys. B: At. Mol. Phys.6 L89

[3] Geltman S and Teague M R 1974J. Phys. B: At. Mol. Phys.7 L22
[4] Reiss H R 1980Phys. Rev.A 22 1786
[5] Geltman S 1992Phys. Rev.A 45 5293
[6] Grobe R and Fedorov M V 1992 Phys. Rev. Lett.68 2592

Grobe R and Fedorov M V 1993 J. Phys. B: At. Mol. Phys.26 1181
[7] Geltman S 1994J. Phys. B: At. Mol. Opt. Phys.27 257
[8] Geltman S 1994J. Phys. B: At. Mol. Opt. Phys.27 1497
[9] Collins L A and Merts A L 1988Phys. Rev.A 37 2415

[10] Bardsley J N, Sz̈oke A and Comella M J 1988J. Phys. B: At. Mol. Phys.21 3899
[11] LaGattuta K J 1989Phys. Rev.A 40 683
[12] Javanainen J, Eberly J H and Su Q 1988Phys. Rev.A 38 3430

Javanainen J, Eberly J H and Su Q 1990Phys. Rev. Lett.64 862



Ionization probabilities 8609

Su Q and Eberly J H 1990J. Opt. Soc. Am.7 564
Su Q and Eberly J H 1990J. Opt. Soc. Am.B 7 564
Law C K, Su Q and Eberly J H 1991Phys. Rev.A 44 7844
Su Q and Eberly J H 1991Phys. Rev.A 43 2474
Su Q 1993Laser Phys.2 241
Su Q, Irving B P, Johnson C W and Eberly J H 1996J. Phys. B: At. Mol. Opt. Phys.29 5755
Su Q, Irving B P and Eberly J H 1997Laser Phys.7 568

[13] Reed V C and Burnett K 1990Phys. Rev.A 42 3152
Reed V C and Burnett K 1991Phys. Rev.A 43 6217

[14] Latinne O, Joachain C J and D̈orr M 1994Europhys. Lett.26 333
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